Android消息机制

我们都知道,Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃。相信大家在日常的工作当中都会经常遇到这个问题,解决的方案应该也是早已烂熟于心,即创建一个Message对象,然后借助Handler发送出去,之后在Handler的handleMessage()方法中获得刚才发送的Message对象,然后在这里进行UI操作就不会再出现崩溃了。


创建Handler对象

首先来看一下如何创建Handler对象。Handler提供了4个构造函数:

Handler();
Handler(Callback callback);
Handler(Looper looper);
Handler(Looper looper, Callback callback);

这4个构造函数分别对应了是否传入Looper实例和是否传入Callback实例。其中前两个函数不传入Looper实例,则此Handler绑定当前线程的Looper对象实例,如Looper实例为空则抛出异常:

mLooper = Looper.myLooper();
if (mLooper == null) {
    throw new RuntimeException(
        "Can't create handler inside thread that has not called Looper.prepare()");
}

如下代码,创建了两个Handler,其中一个在UI主线程中创建,一个在匿名子线程中创建:

public class MainActivity extends Activity {  

    private Handler handler1;
    private Handler handler2;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        handler1 = new Handler();
        new Thread(new Runnable() {
            @Override
            public void run() {
                handler2 = new Handler();
            }
        }).start();
    }
}

如果现在运行一下程序,你会发现,在子线程中创建的Handler是会导致程序崩溃的,提示的错误信息为 Can’t create handler inside thread that has not called Looper.prepare() 。说是不能在没有调用Looper.prepare() 的线程中创建Handler。从Handler构造函数源码可以看出来当Looper.myLooper()返回为空时就会抛出这个异常,先看看Looper.myLooper()函数:

public static final Looper myLooper() {
    return (Looper)sThreadLocal.get();
}

这里可看出myLooper()函数会从sThreadLocal中获取一个Looper的实例,这个实例为空会导致程序崩溃。那我们尝试在子线程中先调用一下Looper.prepare()呢,代码如下所示:

new Thread(new Runnable() {  
    @Override  
    public void run() {  
        Looper.prepare();  
        handler2 = new Handler();  
    }  
}).start();

果然这样就不会崩溃了,那么Looper.prepare()中做了什么了?

public static final void prepare() {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper());
}

可以看出,prepare()函数里new了一个Looper对象的实例set到sThreadLocal中,这样再调用myLooper()就会返回这个Looper实例了。Looper构造函数为:

private Looper() {
    mQueue = new MessageQueue();
    mRun = true;
    mThread = Thread.currentThread();
}

可以看出这里Looper是绑定当前线程的,这样Handler再不传入Looper实例的情况下,也是绑定Handler所在的线程的。因此当前线程在创建Handler前必需先调用Looper.prepare()方法,而且每个线程只能调用一次,否则就会报”Only one Looper may be created per thread”错误。

那么为什么我们再UI主线程中创建的Handler没有调用Looper.prepare()方法,却没有报错呢?这是由于在程序启动的时候,系统已经帮我们自动在主线程里调用了Looper.prepare()方法。查看ActivityThread中的main()方法,代码如下所示:

public static void main(String[] args) {
    SamplingProfilerIntegration.start();  
    CloseGuard.setEnabled(false);  
    Environment.initForCurrentUser();  
    EventLogger.setReporter(new EventLoggingReporter());  
    Process.setArgV0("<pre-initialized>");  
    Looper.prepareMainLooper();  
    ActivityThread thread = new ActivityThread();  
    thread.attach(false);  
    if (sMainThreadHandler == null) {  
        sMainThreadHandler = thread.getHandler();  
    }  
    AsyncTask.init();  
    if (false) {  
        Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread"));  
    }  
    Looper.loop();  
    throw new RuntimeException("Main thread loop unexpectedly exited");  
}

可以看到,在第7行调用了Looper.prepareMainLooper()方法,而这个方法又会再去调用Looper.prepare()方法,代码如下所示:

public static final void prepareMainLooper() {  
    prepare();  
    setMainLooper(myLooper());  
    if (Process.supportsProcesses()) {  
        myLooper().mQueue.mQuitAllowed = false;  
    }  
}

因此我们应用程序的主线程中会始终存在一个Looper对象,从而不需要再手动去调用Looper.prepare()方法了。

这样基本就将Handler的创建过程完全搞明白了,总结一下就是在主线程中可以直接创建Handler对象,而在子线程中需要先调用Looper.prepare()才能创建Handler对象。


发送消息

看完了如何创建Handler之后,接下来我们看一下如何发送消息,这个流程相信大家也已经非常熟悉了,new出一个Message对象,然后可以使用setData()方法或arg参数等方式为消息携带一些数据,再借助Handler将消息发送出去就可以了,示例代码如下:

new Thread(new Runnable() {  
    @Override  
    public void run() {  
        Message message = new Message();  
        message.arg1 = 1;  
        Bundle bundle = new Bundle();  
        bundle.putString("data", "data");  
        message.setData(bundle);  
        handler.sendMessage(message);  
    }  
}).start();

可是这里Handler到底是把Message发送到哪里去了呢?为什么之后又可以在Handler的handleMessage()方法中重新得到这条Message呢?看来又需要通过阅读源码才能解除我们心中的疑惑了,Handler中提供了很多个发送消息的方法,其中除了sendMessageAtFrontOfQueue()方法之外,其它的发送消息方法最终都会辗转调用到sendMessageAtTime()方法中,这个方法的源码如下所示:

public boolean sendMessageAtTime(Message msg, long uptimeMillis)  
{  
    boolean sent = false;  
    MessageQueue queue = mQueue;  
    if (queue != null) {  
        msg.target = this;  
        sent = queue.enqueueMessage(msg, uptimeMillis);  
    }  
    else {  
        RuntimeException e = new RuntimeException(  
            this + " sendMessageAtTime() called with no mQueue");  
        Log.w("Looper", e.getMessage(), e);  
    }  
    return sent;  
}

sendMessageAtTime()方法接收两个参数,其中msg参数就是我们发送的Message对象,而uptimeMillis参数则表示发送消息的时间,它的值等于自系统开机到当前时间的毫秒数再加上延迟时间,如果你调用的不是sendMessageDelayed()方法,延迟时间就为0,然后将这两个参数都传递到MessageQueue的enqueueMessage()方法中。这个MessageQueue又是什么东西呢?其实从名字上就可以看出了,它是一个消息队列,用于将所有收到的消息以队列的形式进行排列,并提供入队和出队的方法。这个类是在Looper的构造函数中创建的,因此一个Looper也就对应了一个MessageQueue。 那么enqueueMessage()方法毫无疑问就是入队的方法了,我们来看下这个方法的源码:

final boolean enqueueMessage(Message msg, long when) {  
    if (msg.when != 0) {  
        throw new AndroidRuntimeException(msg + " This message is already in use.");  
    }  
    if (msg.target == null && !mQuitAllowed) {  
        throw new RuntimeException("Main thread not allowed to quit");  
    }  
    synchronized (this) {  
        if (mQuiting) {  
            RuntimeException e = new RuntimeException(msg.target + " sending message to a Handler on a dead thread");  
            Log.w("MessageQueue", e.getMessage(), e);  
            return false;  
        } else if (msg.target == null) {  
            mQuiting = true;  
        }  
        msg.when = when;  
        Message p = mMessages;  
        if (p == null || when == 0 || when < p.when) {  
            msg.next = p;  
            mMessages = msg;  
            this.notify();  
        } else {  
            Message prev = null;  
            while (p != null && p.when <= when) {  
                prev = p;  
                p = p.next;  
            }  
            msg.next = prev.next;  
            prev.next = msg;  
            this.notify();  
        }  
    }  
    return true;  
}

首先你要知道,MessageQueue并没有使用一个集合把所有的消息都保存起来,它只使用了一个mMessages对象表示当前待处理的消息。然后观察上面的代码的16~31行我们就可以看出,所谓的入队其实就是将所有的消息按时间来进行排序,这个时间当然就是我们刚才介绍的uptimeMillis参数。具体的操作方法就根据时间的顺序调用msg.next,从而为每一个消息指定它的下一个消息是什么。当然如果你是通过sendMessageAtFrontOfQueue()方法来发送消息的,它也会调用enqueueMessage()来让消息入队,只不过时间为0,这时会把mMessages赋值为新入队的这条消息,然后将这条消息的next指定为刚才的mMessages,这样也就完成了添加消息到队列头部的操作。

现在入队操作我们就已经看明白了,那出队操作是在哪里进行的呢?这个就需要看一看Looper.loop()方法的源码了,如下所示:

public static final void loop() {  
    Looper me = myLooper();  
    MessageQueue queue = me.mQueue;  
    while (true) {  
        Message msg = queue.next(); // might block  
        if (msg != null) {  
            if (msg.target == null) {  
                return;  
            }  
            if (me.mLogging!= null) me.mLogging.println(  
                    ">>>>> Dispatching to " + msg.target + " "  
                    + msg.callback + ": " + msg.what  
                    );  
            msg.target.dispatchMessage(msg);  
            if (me.mLogging!= null) me.mLogging.println(  
                    "<<<<< Finished to    " + msg.target + " "  
                    + msg.callback);  
            msg.recycle();  
        }  
    }  
}

可以看到,这个方法从第4行开始,进入了一个死循环,然后不断地调用的MessageQueue的next()方法,我想你已经猜到了,这个next()方法就是消息队列的出队方法。不过由于这个方法的代码稍微有点长,我就不贴出来了,它的简单逻辑就是如果当前MessageQueue中存在mMessages(即待处理消息),就将这个消息出队,然后让下一条消息成为mMessages,否则就进入一个阻塞状态,一直等到有新的消息入队。继续看loop()方法的第14行,每当有一个消息出队,就将它传递到msg.target的dispatchMessage()方法中,那这里msg.target又是什么呢?其实就是Handler啦,你观察一下上面sendMessageAtTime()方法的第6行就可以看出来了。接下来当然就要看一看Handler中dispatchMessage()方法的源码了,如下所示:

public void dispatchMessage(Message msg) {  
    if (msg.callback != null) {  
        handleCallback(msg);  
    } else {  
        if (mCallback != null) {  
            if (mCallback.handleMessage(msg)) {  
                return;  
            }  
        }  
        handleMessage(msg);  
    }  
}

在第5行进行判断,如果mCallback不为空,则调用mCallback的handleMessage()方法,否则直接调用Handler的handleMessage()方法,并将消息对象作为参数传递过去。这样我相信大家就都明白了为什么handleMessage()方法中可以获取到之前发送的消息了吧!

因此,一个最标准的异步消息处理线程的写法应该是这样:

class LooperThread extends Thread {  
  public Handler mHandler;  

  public void run() {  
      Looper.prepare();  

      mHandler = new Handler() {  
          public void handleMessage(Message msg) {  
              // process incoming messages here  
          }  
      };  

      Looper.loop();  
  }  
}

那么我们还是要来继续分析一下,为什么使用异步消息处理的方式就可以对UI进行操作了呢?这是由于Handler总是依附于创建时所在的线程,比如我们的Handler是在主线程中创建的,而在子线程中又无法直接对UI进行操作,于是我们就通过一系列的发送消息、入队、出队等环节,最后调用到了Handler的handleMessage()方法中,这时的handleMessage()方法已经是在主线程中运行的,因而我们当然可以在这里进行UI操作了。

那么在子线程中创建的Handler能不能直接对UI进行操作呢?也是可以的,只要通过构造函数将UI主线程的Looper对象传入Handler即可:

class Looper2Thread extends Thread {  
  public Handler mHandler;  

  public void run() {
      mHandler = new Handler(Looper.getMainLooper()) {  
          public void handleMessage(Message msg) {  
              // process incoming messages here  
          }  
      };  
  }  
}

另外除了发送消息之外,我们还有以下几种方法可以在子线程中进行UI操作:

1. Handler的post()方法

2. View的post()方法

3. Activity的runOnUiThread()方法

我们先来看下Handler中的post()方法,代码如下所示:

public final boolean post(Runnable r)  
{
   return  sendMessageDelayed(getPostMessage(r), 0);  
}

原来这里还是调用了sendMessageDelayed()方法去发送一条消息啊,并且还使用了getPostMessage()方法将Runnable对象转换成了一条消息,我们来看下这个方法的源码:

private final Message getPostMessage(Runnable r) {  
    Message m = Message.obtain();  
    m.callback = r;  
    return m;  
}

在这个方法中将消息的callback字段的值指定为传入的Runnable对象。咦?这个callback字段看起来有些眼熟啊,喔!在Handler的dispatchMessage()方法中原来有做一个检查,如果Message的callback等于null才会去调用handleMessage()方法,否则就调用handleCallback()方法。那我们快来看下handleCallback()方法中的代码吧:

private final void handleCallback(Message message) {  
    message.callback.run();  
}

也太简单了!竟然就是直接调用了一开始传入的Runnable对象的run()方法。因此在子线程中通过Handler的post()方法进行UI操作就可以这么写:

public class MainActivity extends Activity {  
  
    private Handler handler;  
  
    @Override  
    protected void onCreate(Bundle savedInstanceState) {  
        super.onCreate(savedInstanceState);  
        setContentView(R.layout.activity_main);  
        handler = new Handler();  
        new Thread(new Runnable() {  
            @Override  
            public void run() {  
                handler.post(new Runnable() {  
                    @Override  
                    public void run() {  
                        // 在这里进行UI操作  
                    }  
                });  
            }  
        }).start();  
    }  
}

虽然写法上相差很多,但是原理是完全一样的,我们在Runnable对象的run()方法里更新UI,效果完全等同于在handleMessage()方法中更新UI。

然后再来看一下View中的post()方法,代码如下所示:

public boolean post(Runnable action) {  
    Handler handler;  
    if (mAttachInfo != null) {  
        handler = mAttachInfo.mHandler;  
    } else {  
        ViewRoot.getRunQueue().post(action);  
        return true;  
    }  
    return handler.post(action);  
}

原来就是调用了Handler中的post()方法,我相信已经没有什么必要再做解释了。 最后再来看一下Activity中的runOnUiThread()方法,代码如下所示:

public final void runOnUiThread(Runnable action) {  
    if (Thread.currentThread() != mUiThread) {  
        mHandler.post(action);  
    } else {  
        action.run();  
    }  
}

如果当前的线程不等于UI线程(主线程),就去调用Handler的post()方法,否则就直接调用Runnable对象的run()方法。


参考:

Android异步消息处理机制完全解析,带你从源码的角度彻底理解



—  我的个人空间 |   —